U.K. HiGEM: Impacts of Desert Dust Radiative Forcing in a High-Resolution Atmospheric GCM
نویسندگان
چکیده
This work investigates the impacts ofmineral dust aerosol on climate using the atmospheric component of the U.K. High-Resolution Global Environmental Model (HiGEM) with an interactive embedded mineral dust scheme. It extends earlier work by Woodage et al. in which direct radiative forcing due to dust was calculated and inwhich it was reported that the global total dust burdenwas increasedwhen this was included in themodel. Here this result is analyzed further and the regional and global impacts are investigated. It is found that particle size distribution is critically important: In regions where large, more absorbent dust particles are present, burdens are increased because of the enhanced heating aloft, which strengthens convection, whereas, in areas where smaller, more scattering particles dominate, the surface layers are stabilized and dust emissions are decreased. The consequent changes in dust load andparticle size distributionwhen radiative effects are included make the annual mean global forcing more positive at the top of the atmosphere (0.33 versus 0.05Wm). Impacts on theWestAfricanmonsoon are also considered, where Saharan dust brings about a northward shift in the summertime intertropical convergence zone with increased precipitation on its northern side. This contrasts with results from some other studies, but the authors’ findings are supported by recent observational data. They argue that the impacts depend crucially on the size distribution and radiative properties of the dust particles, which are poorly known on a global scale and differ here from those used in other models.
منابع مشابه
Atmospheric aerosols during the 2003 heat wave in southeastern Spain II: Microphysical columnar properties and radiative forcing
The columnar properties of atmospheric aerosol (size distributions, single scattering albedo and asymmetry parameter) are investigated based on sun/sky photometer measurements obtained during August 2003 at Granada (37.181N, 3.581W, 680m a.s.l.), southeastern Spain. Also, we compute and analyze the average aerosol radiative forcing under two different atmospheric situations that occurred during...
متن کاملRadiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models
[1] A primary component of the observed recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone, and LLGHGs. In the context of the inc...
متن کاملGlobal radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model
[1] Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II0, that simulates coupled tropospheric ozone-NOxhydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled ga...
متن کاملLongwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra
[1] Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth’s Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean L...
متن کاملInvestigation of radiative effects of the optically thick dust layer over the Indian tropical region
Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO) have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100 m resolution in the lower atmosphere, using temperature and relative humidity d...
متن کامل